ROUND I: Definitions
ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM

1. The successor of an integer is the next larger integer. The square of a certain integer is 721 less than the square of its successor. Find the integer.
2. If a and b are two real numbers, then $a \propto b$ is defined to be $a b+7 a+7 b+42$. Find a number e such that a a $e=a$ for all values of a
3. If $x \Delta y=\left\{\begin{array}{l}y \text { if } x+y>0 \\ x \text { if } x+y \leq 0\end{array}\right.$
and $x \diamond y=\left\{\begin{array}{l}2 y \text { if } x-y>0 \\ 2 x \text { if } x-y \leq 0\end{array}\right.$
Evaluate $[2 \Delta((-2 \Delta 4) \diamond(-3))] \diamond(-5)$.

Answers
(1 pt.) 1.
(2 pts) 2.
(3 pts) 3.
Auburn, Burncoat, Hudson, Quaboag

Round II: Algebra I - open
ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM

1. Terry starts walking home from school at 4 miles per hour. Ten minutes later, Chris leaves school, running to catch up with Terry. What speed does Chris have to average in order to catch up with Terry in 15 minutes?
2. Solve $\sqrt{x+3}=9-x$
3. There are three numbers greater than one such that:

The difference of the reciprocals of the two smaller is $\frac{3}{40}$
The sum of the reciprocals of the smallest and largest is $\frac{29}{120}$
The difference of the reciprocals of the two larger is $\frac{1}{12}$

ad the three numbers. Find the three numbers.

ANSWERS
(1 pt.) 1. $\mathrm{mi} / \mathrm{hr}$
(2 pts) 2. \qquad
(3 pts) 3. \qquad
Bancroft, Quaboag, South

Round III: Geometry - open
ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM

1. If $\mathrm{m} \angle \mathrm{DOB}=4 x-1$
$\mathrm{m} \angle \mathrm{DOC}=2 x+6$
and $\mathrm{m} \angle \mathrm{COB}=59^{\circ}$,
Find $\mathrm{m} \angle \mathrm{DOB}$ in degrees.

2. A new sports field is to be sodded using 2 ft by 2 ft squares of sod. If the length of the field is 70 yards longer than the width and its area is 6000 sq. yards, how many squares of sod will be needed?
3. In circles A and $\mathrm{D}, \mathrm{AB}=\mathrm{DC}=1$ and $\overline{\mathrm{BC}}$ is a tangent segment. If the shaded regions have equal areas, find length $B C$. (If π is involved, keep it as π. Don't approximate.)

ANSWERS
(1 pt.) 1. \qquad
(2 pts) 2.
(3 pts) 3. \qquad

Algonquin, Southbridge, Tahanto

Round IV: Functions
ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM

1. If $f(x)=\frac{2}{3} x+6$, find $f(x+3)-f(x)$
2. For $f(x)$ shown by the graph at the right, solve $f(2 x)=2$, for x.
3. Find $f(6)$ given

$$
f(x)=\left\{\begin{array}{l}
f(f(x-2))+1 \text { when } x>1 \\
2 \text { when } x=1 \\
1 \text { when } x=0
\end{array}\right.
$$

ANSWERS
(1 pt.) 1 . \qquad
(2 pts) 2. $x=$
(3 pts) 3.

Auburn, Bancroft, Mass Academy

Round V: Trigonometry - open

EACH ANSWER MUST BE IN THE FORM SPECIFIED IN THE PROBLEM

1. Find the smallest positive value of x in radians for which $\sin 2 x=2 \sin x$.
2. On March 21 on a certain island on the equator, the sun rises due east at 6 am, is directly overhead at noon, and sets due west at 6 pm (locally). At 2 pm a tree casts a 15 foot long shadow. To the nearest foot, how long will the shadow be at 5 pm? Assume flat ground.
3. All three sides of $\triangle A B C$ have integer lengths. The shortest side is 4 units long. What is the longest possible side that $\triangle A B C$ can have and still be an acute, non-isosceles triangle?

ANSWERS
(1 pt.) 1.

(3 pts) 3.
Mass Academy, St. John's, QSC

TEAM ROUND: Topics of previous rounds and open
ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM AND ON THE SEPARATE TEAM ANSWER SHEET

1. Let $S(N)$ be the number of ways to represent a positive integer N as a sum of two or more consecutive positive integers in increasing order. For example: $4+5=9$ and $2+3+4=9$, so $S(9)=2$. Find $S(63)$.
2. 5 picas have the same value as 13 mortites, 5 mortites have the same value as 13 fedoras, and 5 fedoras have the same value as 13 minskies. How many minskies will you need to have the same value as 1000 picas?
3.

If lines a, b, and c are parallel, find the sum $x+y+z$.
4. Suppose $f(x)=\frac{1}{\sqrt{x}}, x>0$, and $g(x)=\cos x,-\pi \leq x \leq \pi$

Find the domain of $f\left(g\left(x-\frac{\pi}{2}\right)\right)$
5. Evaluate $\cot \left[\arcsin \left(\tan \left[\arccos \frac{-12}{13}\right]\right)\right]$ in simplified radical form. A fraction is acceptable, but no decimal approximation.
6. If the geometric mean of p and q is 3 , and the sum of their squares is 8 , evaluate $(p+q)^{2}$
7. The product of a set of distinct positive integers is 48 . What is the smallest possible sum of such a set of integers?
8. The planes defined by the equations $4 x+y+2 z=1$ and $x+4 y=0$ both include the point $\left(k, k^{2}, 2 k^{3}+1\right)$. Find k.
9. Five integers a, b, c, d, and e are such that $a<b<c<d<e$. Also if any two of them are added, the sum is either $43,46,49,50,51,53,54,56,57$, or 61 . Find the value of c.

Assabet Valley, Auburn, Burncoat, Hudson, Quaboag, St. John's, Shrewsbury, Westborough

ROUND I 1. I ot 360
deis
2.2nus -6
3. 3 rits -10
ater 1
2. 2 nts 6
3. 3 nts 5,8,
1,1 nt 131°
geom
2. 2 nts 13,500
3. 3 ves $\frac{\pi}{2}$

ROUND IV

1. 1 ot

32
2.2nts $1 / 2$ or. 5
3. 3 nts $a^{2}, 1 / a($ need both $)$

ROUND V

1. 1 nt
trie
?. 2 nts
2. 3 nts
3. 5
4. 17,576
5. 59
6. $0<x<\pi$ <R $(0, \pi$
7. $\frac{-\sqrt{119}}{5}$
8. 26
9. $/ 2$
10. $-\frac{1}{4}$ or -.25
․ 26
